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Abstract:  Increasingly, local education policymakers have access to evidence from published 
reports based on randomized control trials (RCTs) to inform decisions about whether to adopt 
an educational intervention.  A key question is how well the published results from a multi-site 
RCT predict the potential consequences of adopting an intervention for each of the many local 
schools or districts that may consider adopting it.  This paper offers a set of methods for 
quantifying the accuracy of the local predictions that can be obtained from multi-site RCTs, 
using available data from those RCTs, and for assessing the likelihood that prediction errors will 
lead to errors in local policy decisions.  It also provides the first empirical evidence on the 
accuracy with which local impacts can be predicted from the evidence taken from published 
reports on RCTs in education. 
 
 
Many evaluations of education interventions are primarily intended to inform local education 
decision makers.  Adoption of specific curricula or teaching techniques, teacher evaluation and 
compensation systems, student mentoring programs, and many other educational 
interventions are all the province of local school administrators or state officials.  Indeed, the 
Every Student Succeeds Act of 2016 shifts even more authority for education policy from the 
federal government to states (Aragon et al., 2016), and state education authorities are 
increasingly giving local school boards more authority over education policy decisions in some 
instances (Burnette, 2017). 
 
Increasingly, local education policymakers have access to evidence from published reports 
based on randomized control trials (RCTs) to inform decisions about whether to adopt an 
intervention.  These evaluations, which often encompass multiple schools or districts, use 
random assignment to determine the schools, classrooms, and/or students that receive an 
intervention and which do not to ensure that impact estimates—derived as differences in 
outcomes between the two groups—do not suffer from treatment selection bias (Orr 1999). 
Many RCTs have been sponsored by the U.S. Department of Education.  And many of these 
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evaluations have been reviewed and disseminated by the What Works Clearinghouse (WWC) 
“…to provide educators with the information they need to make evidence-based decisions” 
(front page of the WWC website; https://ies.ed.gov/ncee/WWC/). 
 
But how well do the published results from a given multi-site RCT predict the potential 
consequences of adopting the tested intervention for each of the many local schools or districts 
that may consider adopting it?  Published results may produce unbiased estimates of the 
average impact of an intervention in the study sample and still produce inaccurate predictions 
of the impact for individual schools and districts if the impact of the intervention varies across 
localities.  Unfortunately, there is relatively little evidence on how much the impacts of 
educational interventions vary and no evidence (of which we are aware) on the implications of 
this variation for the accuracy with which the local impact of adopting an intervention can be 
predicted using findings from a national evaluation. 
 
This paper makes three contributions.  First, it highlights a potential challenge in making local 
education policy decisions that has been underappreciated in the literature:  Reported evidence 
from RCTs may not accurately predict the impacts of adopting an intervention in individual 
localities.  Second, it offers a set of methods for quantifying the accuracy of the local 
predictions that can be obtained from multi-site RCTs and for assessing the likelihood that 
prediction errors will lead to errors in local policy decisions. Third, it demonstrates these 
methods, providing the first empirical evidence on the accuracy with which local impacts can be 
predicted from the evidence taken from published reports on RCTs in education.  
 
To measure the accuracy with which published evidence from national evaluations can predict 
local impacts, we develop and apply an analytic strategy that involves (1) pretending that one 
of the localities (henceforth, “sites”) that participated in a national, multi-site RCT had been 
excluded from the study, (2) using statistical methods to predict the impact of the intervention 
in the excluded site using the data from the other sites, (3) repeating this process for each site 
in the RCT, and (4) summarizing the resulting prediction errors across the sites.  In addition, we 
extend and apply methods from Bell and Orr (1995) to calculate the probability that these 
prediction errors would lead localities to make the wrong policy decisions about whether to 
adopt the intervention. 
 
Applying these methods to data from three multi-site national RCTs in education,2 we assess 
the accuracy with which policymakers can predict the local impacts of three potential policy 
decisions that they may face: (1) whether to allow charter schools to open in a particular school 
district or community, (2) whether to adopt technology-based classroom interventions in a 
particular school, grade level, and subject area, and (3) whether to fund a Head Start program 
in a particular locality.  We make no claims that the results presented in this paper are broadly 

                                                      
2 We term these studies “national evaluations” because they were funded with the intent of informing 
policymakers throughout the nation, not just those in the study areas.  Only one, the Head  
Start Impact Evaluation, selected its sample to be formally representative of a national population. 
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generalizable to other education policy decisions that could be informed by RCTs.   However, 
these results provide initial evidence on how accurately local policymakers can predict the 
consequences of at least some of the policy decisions they face based on the results from 
multisite RCTs, and, as noted, the analysis demonstrates methods that can be used to 
investigate that question in other contexts. 
 
The next section describes the problem policy makers face when trying to use evidence from 
rigorous national evaluations to predict the impact of adopting an intervention locally.  We 
then present the data and methods we used to assess the magnitude of prediction errors that 
can result from using this evidence and the likelihood that these errors will lead to incorrect 
policy decisions. We conclude with our empirical results and our interpretation of those results.  
 

STATEMENT OF THE PROBLEM 

Evidence-based policy is all about prediction—for example, predicting the impact of an 
intervention to inform whether it should be adopted.  In a perfect world, local policymakers 
would be able to predict accurately the impact of adopting an intervention locally.  Then 
policymakers could weigh the predicted impact and the costs of adopting the intervention 
against the status quo and against the predicted impacts and costs of alternative interventions. 
 
In the real world, local policymakers can attempt to predict an intervention’s impact using the 
evidence available, but that prediction will inevitably contain some error.  This section discusses 
both the sources of error and the prediction options available to local education authorities. 
 
Errors in Predicting the Impact of Adopting an Intervention Locally 
 
Localities can conduct local pilot tests to estimate the impact of adopting an intervention 
locally. But most often, the evidence available to local policy makers comes from an evaluation 
conducted in other localities.  Therefore, evidence-based policy decisions usually involve out-of-
sample predictions using data from localities that participated in an evaluation to predict 
impacts in other localities.   
 
In predicting local impacts from the data or findings from national evaluations, there are two 
sources of prediction error:  bias and variance.  The bias component is defined relative to the 
parameter of policy interest for the local decision-maker (e.g., the average impact that the 
intervention would have if it were adopted in the decision-maker’s school district). If impacts 
vary across localities, the average impact estimates reported by the evaluation – though 
unbiased for the evaluation sample – may be biased for the impact in any given locality.  For a 
particular locality, it can be shown that the bias is a function of two factors: (1) the difference 
between the evaluation sample and the locality on factors that affect the magnitude of—i.e., 
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moderate—the intervention’s impact,3  and (2) the strength of the influence of those 
moderators on impact magnitude (e.g., see Tipton 2013, p. 116). In general, the amount of bias 
is unknown and difficult to estimate because the factors that moderate the impacts of any 
intervention are typically unknown or difficult to measure in evaluations.  This bias generates 
errors in predicting the local impact of adopting an intervention. 
 
The second source of prediction error—the variance (or standard error) of the published impact 
estimates—results from conducting evaluations in finite samples.  Even if the bias of prediction 
to the local level were zero (i.e., if the true impact were the same in the evaluation sites and 
the decision-maker’s school or district), we would still expect the variance of the impact 
estimate to produce error in the predicted impact of adopting the intervention locally. 
 
A common metric for quantifying the magnitude of prediction errors is the Mean Squared Error 
(MSE), which in this context we call the Mean Squared Prediction Error (MSPE).  The MSPE 
captures both sources of prediction error:  It equals the bias squared plus the sampling variance 
of the prediction.  This metric is indifferent to whether prediction errors result from bias or 
variance, much as policymakers should be indifferent between the two sources of the 
prediction error.  It is also indifferent to whether the errors are positive or negative.  This is the 
primary metric we will use to quantify the amount of error in predicting local impacts. 
 
Choosing Among Different Impact Estimates for Making Local Predictions 
 
RCTs typically produce multiple impact estimates that can be used to predict the impact of 
adopting an intervention locally.  For example, they often present an overall average effect as 
well as the effects for particular subgroups of students or sites, such as minority students or 
schools in urban settings.  But it is not clear which estimate or estimates the policymaker 
should use because it is not clear which estimates yield the smallest prediction errors.   
 
One option is to use the average impact reported for the entire sample.  The main advantage of 
using this estimate is that it minimizes the variance component of the prediction error by using 
the largest possible sample.  However, if the study sample differs in important ways from the 
students who would receive the intervention if the intervention were adopted locally—or the 
environment in which the intervention would be implemented differs substantially from the 
environment in which the intervention was evaluated—this estimate may be biased for the 
parameter of interest: the average impact in the locality that may adopt the intervention.   
 
Alternatively, policymakers can use subgroup impact estimates—when reported—to predict 
the impact of adopting an intervention locally.  It is very common for RCTs in education to 
estimate and report the effect in one or more sets of mutually exclusive subgroups of students 
(e.g., minority students and white students), teachers (e.g., new teachers and experienced 
teachers), or schools (e.g., urban schools and rural schools). Using subgroup estimates may 

                                                      
3 For a conceptual description of the types of factors that may moderate the effects of educational interventions, 
see Weiss, Bloom, and Brock (2014). 
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reduce the bias if the subgroup sample mirrors the local student population more closely than 
the overall sample.  
 
However, relying on subgroup estimates will typically increase the variance component of the 
prediction error since the subgroup estimates are based on smaller samples and thus contain 
additional sampling error. Therefore, using subgroup estimates will reduce the MSPE if the 
reduction in bias outweighs the increase in variance, but it will increase the MSPE if the reverse 
is true.   
 
Finally, some evaluations model the impact of an intervention as a function of multiple 
moderator variables simultaneously.  Mechanically, these models are estimated by interacting 
multiple variables that may moderate the impact of the treatment with the treatment indicator 
in a regression model of the outcome. Models of this type potentially allow policymakers to use 
more information about their students and/or local environment to refine their predictions of 
the impact of adopting the intervention locally.  But to use these models, policymakers would 
need to do some calculations themselves, combining the estimated coefficients from the 
model—if published (a rarity)—with local information about students and the environment in 
which the intervention would be implemented.  There is also a tradeoff in these models 
between bias and variance, which we will discuss later, in the section “Selection of Subgroup 
and Moderator Variables for the Regression Models.” 
 
In summary, when local policymakers have access to published evidence from an RCT, they can 
typically obtain a pooled impact estimate and several subgroup estimates that could help them 
to predict the impact of adopting the intervention locally.  Furthermore, they can produce 
additional impact estimates that may be relevant for predicting local impacts if the study 
reported regression models with multiple moderators—or they obtain the micro data necessary 
to estimate such models themselves. This paper compares the errors that result from using 
each of these types of estimates to predict the local impacts of the intervention. 
 
RELATED LITERATURE 
 
To our knowledge, little or no attention has been paid to the problem of translating the findings 
of large-scale, multi-site evaluations for use in local decision making.  In contrast to the 
enormous amount of attention that has been devoted to issues of internal validity, researchers 
are just starting to consider external validity, also known as “generalizability” or 
“transportability”—that is, whether the causal effects found in one context or for one 
population hold in another context or population.   Bareinboim and Pearl (2013) provide a 
theoretical basis for assessing whether findings from a study are “transportable” to another 
population or context.   
 
Some recent research has focused on transportability from the sample used in an impact 
evaluation to the population from which it was selected. Shadish, Cook, and Campbell (2002) 
refer to this as generalizing “from narrow to broad” (p.22).  The need for sophisticated methods 
in this regard arises from evidence of effect heterogeneity in multi-site randomized trials.  
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Substantial variation in impacts across sites has been found for a variety of educational 
interventions, including charter middle schools, small high schools of choice in New York City, 
Job Corps, and—at least for some of the outcomes examined—Head Start.4   Similarly, 
Konstantopoulos (2011) found substantial variation in class size effects across schools.   
 
Important theoretical and empirical work has addressed the challenges in making “narrow to 
broad” generalizations—i.e., accurately predicting the average impact in a population when 
impacts vary. Tipton (2013) provides a statistical basis for making generalizations across 
contexts.  Stuart et al. (2011) and Tipton (2014) provide methods for assessing the likely 
transportability of study findings. Olsen et al. (2013) formalizes the external validity bias arising 
from estimating the population average treatment effect from a sample of sites that were 
selected or self-selected non-randomly from the population.  Bell et al. (2016) presents 
empirical evidence on the magnitude of this bias in an education evaluation. Kern et al. (2016) 
test different analysis methods for reducing this bias and for more generally extrapolating from 
the study to a target population, while Tipton (2013) and Olsen and Orr (2016) offer different 
design solutions to the problem:  Tipton offers methods for selecting sites systematically to 
match the population on observed characteristics, while Olsen and Orr demonstrate how sites 
can be selected randomly.  
 
To our knowledge, the current work is the first research focusing explicitly on what Shadish, 
Cook, and Campbell refer to as generalizing “from the broad to the narrow” (p. 22) – i.e., from a 
collection of sites to individual sites outside the evaluation sample. This paper may be the first 
to test empirically how accurately local education policymakers can make that inductive leap, 
from the “broad” evidence of a multi-site RCT to the “narrow” impact predicted for the 
policymaker’s own locality. 
 
DATA AND METHODS 
 
This section describes and justifies the data and methods used in the analysis to predict site-
level impacts for educational interventions and assess the accuracy of those predictions.  
 
Data  
 
The data used in our analysis come from three different multisite RCTs in education/child 
development: (1) the Evaluation of Charter School Impacts (Gleason et al., 2010), (2) the 
Evaluation of the Effectiveness of Educational Technology Interventions (Dynarski et al., 2007; 
Campuzano et al., 2009), and (3) the Head Start Impact Study (Puma et al., 2010, 2012).  The 
first two datasets were obtained via a restricted access license from the National Center for 
Education Statistics (NCES). The third dataset was obtained from the Interuniversity Consortium 
for Political and Social Research (ICPSR) at the University of Michigan. Below we briefly describe 
each of these studies: 
 

                                                      
4 See Weiss et al. (forthcoming). 
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 The Evaluation of Charter School Impacts exploited charter school admission lotteries in 
2005-06 and 2006-07 at 36 charter middle schools to estimate the impacts of attending 
a charter school on student achievement.  To be eligible for the study, a charter middle 
school had to be oversubscribed—that is, it had to have more applicants than it could 
serve at the school’s entry grade level—and use a lottery to admit students to the 
school.  Lottery winners were included in the treatment group; lottery losers were 
included in the control group. The sample included almost 3,000 students who applied 
to one of the participating schools.  The evaluation reported no significant average 
impact on student achievement, student behavior or progress in schools.  However, it 
found that impacts vary substantially across schools, and in particular, that impacts 
were more favorable in schools that serve more low-income and low-achieving 
students.   

 
 The Evaluation of the Effectiveness of Educational Technology Interventions randomized 

teachers to receive training and resources to implement a technology-related 
intervention in their classrooms in the 2004-05 school year.  The study was conducted in 
grades 1, 4, and 6, as well as in algebra classes; the technology intervention tested 
varied across grade levels and whether they were focused on reading instruction or 
math instruction.  The total sample included 132 schools, 439 teachers, and 9,424 
students.  The study reported no significant average impacts on student achievement in 
any of the grade levels or classes.  Also, while the study displayed estimated impacts 
separately by school, no test of variation across schools was conducted. Finally, in most 
grade levels, the study found no significant relationship between the impact of the 
intervention and variables that might moderate the impact of the intervention. 

 
 The Head Start Impact Study randomized almost 5,000 eligible 3- and 4-year-olds who 

had applied for the program in 2003 at one of 84 grantees that were randomly selected 
for inclusion in the study.  Grantees had to be oversubscribed to be eligible for selection; 
the great majority in the nation were.  Children in the sample were followed through 
the spring of third grade, and outcome data were collected in the areas of cognitive 
development, social-emotional development, health status and services, and parenting 
practices.  The study found positive average impacts on exposure to high-quality early 
care and education environments, positive impacts on language and literacy 
development while enrolled in the program, and generally insignificant impacts on 
language, literacy, and math achievement in first grade and beyond. Subsequent 
research has identified substantial heterogeneity in impacts across centers (Bloom and 
Weiland 2015; Walters 2015) and further established that centers offering full-day 
service and frequent home visits delivered larger impacts (Walters 2015).  
 

These studies were selected for three reasons.  First, they evaluated the impacts of educational 
interventions that local policymakers could adopt—or could apply for funding to implement.  
Therefore, these studies are relevant for assessing our ability to inform local policy decisions 
using evidence from national studies.  Second, they are based on randomized trials.  We focus 
on randomized trials because random assignment maximizes the study’s internal validity:  This 
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allows us to focus on the external validity of study results when impacts may vary.  Third, they 
are large studies spanning many states, and publicized on the websites of the U.S. Department 
of Education and the What Works Clearinghouse.  Therefore, if randomized trials are going to 
be visible enough to influence local education policy, it would almost surely be through studies 
like these.  
 
Because this paper tests different methods for predicting impacts in a single site, we first had to 
define what constitutes a site for each of the three studies: 
 
 Charter schools.  Conceptually, we defined the site as the local area from which a 

prospective charter school would draw its students.  Operationally, each site was 
defined around a charter lottery.5 The site was composed of the schools that students 
who entered the lottery would ultimately attend (typically the charter school for 
students who won admission in the lottery and typically regular public or private schools 
for students who did not win admission). 
 

 Education technology.   Because technology interventions can be implemented in 
individual schools, and principals face decisions about whether to adopt particular 
interventions in their schools, we defined the site as a single school.   
 

 Head Start.  Because Head Start funding is awarded through grants to local 
organizations, and localities must decide whether to apply for Head Start funding, we 
defined a site as the geographic area covered by a single Head Start grantee.6 

 
Empirical Strategy 
 
We simulate the use of results from multi-site randomized trials to predict impacts in a single 
school district outside the evaluation sample. 7 The simulations involve taking the actual data 
from a multisite evaluation that randomized students or classrooms within sites, pretending 
that one of the participating sites did not actually participate in the evaluation, and testing how 
well the impact in that site can be predicted using the characteristics of that site and evaluation 
data from the other sites.   
 
Specifically, we apply the following procedure separately for each of the three multisite RCTs 
described above: 
 

                                                      
5 Generally, each lottery was associated with a single charter school, but there were exceptions where multiple 
charter schools shared a single lottery (and, thus, a single site). 
6 An alternative would be to define the site as a single Head Start center, where each grant supports multiple 
centers.  However, defining sites as grantee instead of centers allows us to focus on local policy decisions about 
whether to apply for Head Start funding. 
7 We focus on the results of randomized trials, which eliminate internal validity bias, to focus attention on the 
external validity of the impact estimates. 
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1. Begin with data from a multisite RCT that allows unbiased site-specific impact 
estimation (i.e., a study with within-site random assignment). 

2. Select a statistical method for predicting the intervention’s impact in individual sites. 
(Details of those methods below). 

3. Pretend that one of the n sites in the evaluation was excluded from the sample. 

4. Calculate the predicted impact for the excluded site by applying the statistical method 
from step 2 to the data from the other n-1 sites. This prediction may contain both bias 
and sampling error, as described earlier. 

5. Calculate the estimated impact for the excluded site by exploiting the experiment 
conducted in that site.  This estimate, derived from data for just the subject site, will be 
unbiased due to random assignment.  It serves as our benchmark for estimating the 
amount of prediction error in the predicted impact estimate calculated at step 4.   

6. Estimate the prediction error by taking the difference between the predicted impact for 
the excluded site (from Step 4) and the estimated impact for the excluded site (from 
Step 5).  

7. Repeat steps 3-6 for each of the remaining n-1 sites to calculate an estimate of the 
prediction error for each site. 

8. Calculate the Root Mean Squared Prediction Error (RMSPE) for the chosen statistical 
method across all sites in the RCT.  As will be explained later, our approach to 
calculating the RMSPE accounts for the sampling error in the estimated impacts for the 
excluded sites.   

9. Estimate the share of sites that would make the wrong policy decision due to the 
prediction error—that is, adopt the intervention when it should not be adopted or vice 
versa.  

10. Repeat steps 2-9 for different statistical methods of predicting the impact in excluded 
sites and assess the relative performance of the different methods.   

 
Prediction Methods Tested 
 
To predict the impact in the excluded site (Steps 2 and 4), we apply three different methods: 
 
 Estimate the average, pooled impact for sites in the study sample.  This impact 

estimate is usually the main finding from an impact analysis; it can be used to predict 
the impact in the excluded site.   

 Estimate the impact for a subgroup (defined by a single variable) in which the 
excluded site falls. Many RCTs produce impact estimates for selected subgroups of 
sites, such as separate estimates for urban and rural sites. If the excluded site is in an 
urban area, the estimated impact for urban sites could be used to predict the impact of 
the intervention for this site.   
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 Estimate an equation that models the variation in impacts across sites as a function of 
multiple site-level variables.  Some impact analyses use “response surface modelling” 
(Box and Draper, 1987; Rubin, 1992) to model the impact of an intervention as a 
function of multiple site level moderator variables (e.g., urban/rural location, % low-
income students, and baseline performance levels).  The estimated regression model is 
then used to predict the impact in the excluded site, using that site’s characteristics.   

 
Regression Models 
 
This section describes the regression models that we estimated to implement each of the three 
statistical methods described in the previous section.  As a benchmark for calculating prediction 
errors, we estimated the impact in site s, which we pretend was excluded from the evaluation 
(Step 5, as described earlier).  This estimate is calculated using only the data from site s.  
Because of random assignment, this estimate is unbiased for the impact in that site. 8   
 
To estimate the impact in the excluded site—site 𝑠𝑠 —we used the following regression model 
using data from that site: 
 
(1)   𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

 𝑒𝑒𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2) 

where: 

 𝑦𝑦𝑖𝑖𝑖𝑖 is the outcome for student i in site s. 
 𝑋𝑋𝑖𝑖𝑖𝑖′  is a vector of student-level covariates included to improve the precision of the 

estimates. 
 𝑇𝑇𝑖𝑖𝑖𝑖 is the treatment indicator, which equals 1 if student i in site s was assigned to the 

treatment group and 0 if this student was assigned to the control group.  
 𝑒𝑒𝑖𝑖𝑖𝑖 is a random error term that varies across the students in site s. 

The first prediction method examined involves estimating the average, pooled impact for 
sites—denoted by the subscript 𝑗𝑗—that we treat as being part of the study sample (𝑗𝑗 ≠ 𝑠𝑠) and 
using this estimate as the predicted impact in the excluded site (𝑗𝑗 = 𝑠𝑠). To estimate this impact, 
we estimated the following regression model using data from all sites but the excluded site:  

 
(2) 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝛿𝛿𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

 𝛼𝛼𝑖𝑖 = 𝛼𝛼 + 𝑢𝑢𝑖𝑖 

 𝛿𝛿𝑖𝑖 = 𝛿𝛿 + 𝑣𝑣𝑖𝑖 , 

                                                      
8 For Charter Schools and Educational Technology, we used PROC REG in SAS to estimate the regression models-- 
Ordinary Least Squares for equation (1) and restricted Maximum Likelihood (ML) for equations (2)-(4). For Head 
Start, we estimated all regression models in R using the nlme package, and results were compared to SAS results to 
verify correspondence. 
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where most of these terms were defined for equation (1), but in addition: 

 𝑗𝑗 indexes each variable for site j, where j ranges from 1 to n-1 omitting site s, and n is 
the total number of sites. 

 𝑢𝑢𝑖𝑖  is a random component of the intercept that varies across sites.  
 𝑣𝑣𝑖𝑖  is a random component of the impact that captures the difference between the 

impact in site j and the average impact across all sites. 

The estimate of 𝛿𝛿 was used to predict the impact in site s. 
 
The second prediction method examined involves estimating impacts for different subgroups of 
sites defined by a single variable. This approach involves estimating an enhanced version of 
equation (2) that adds a binary variable that classifies sites into different subgroups (𝑆𝑆𝑖𝑖) and an 
interaction term between the subgroup variable and the treatment indicator:  
 
(3) 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝛿𝛿𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

 𝛼𝛼𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑆𝑆𝑖𝑖 + 𝑢𝑢𝑖𝑖 

 𝛿𝛿𝑖𝑖 = 𝛿𝛿 + 𝜃𝜃𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖 , 
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where 𝑆𝑆𝑖𝑖 = 1 for sites in one subgroup and 𝑆𝑆𝑖𝑖 = 0 for sites in the other subgroup. The 
estimated impact for site j is  𝛿𝛿 + 𝜃𝜃�𝑆𝑆𝑖𝑖, where 𝛿𝛿 is the estimate of 𝛿𝛿 and 𝜃𝜃� is the estimate of 𝜃𝜃. 
 
The third method examined involves estimating an equation that models impact as a function 
of one or more site-level variables – a “response surface model.”  This approach involves 
augmenting the regression model to include interaction terms between each of the included 
moderator variables and treatment, as well as estimating main effects for each moderator.  The 
distinctions between this and the previous approach are that 1) moderator variables are 
included in continuous, rather than binary, form, and 2) multiple moderator variables are 
potentially included. This approach uses a model of the following form: 
 
(4) 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝛿𝛿𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

 𝛼𝛼𝑖𝑖 = 𝛼𝛼 + 𝑍𝑍𝑖𝑖′𝛾𝛾 + 𝑢𝑢𝑖𝑖 

 𝛿𝛿𝑖𝑖 = 𝛿𝛿 + 𝑍𝑍𝑖𝑖′𝜃𝜃 + 𝑣𝑣𝑖𝑖 , 
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 Var �
𝑒𝑒𝑖𝑖𝑖𝑖
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
�~𝑁𝑁��

0
0
0
� , �

𝜎𝜎𝑒𝑒2 0 0
0 𝜎𝜎𝑢𝑢2 0
0 0 𝜎𝜎𝑣𝑣2

��,  

where 𝑍𝑍𝑖𝑖′ is a vector of site-level variables that moderate the effect of the intervention.  The 
estimated impact for site j is  𝛿𝛿 + 𝑍𝑍𝑖𝑖′𝜃𝜃�, where 𝛿𝛿 is the estimate of 𝛿𝛿 and 𝜃𝜃� is the estimate of the 
coefficient vector 𝜃𝜃. 
 
Potential Moderator Variables 
 
Two of the prediction methods—the subgroup approach reflected in equation (3) and the 
response surface modelling approach reflected in equation (4)— require site-level subgroup or 
moderator variables.  Therefore, we used the available data to select or construct site-level 
variables that could be used to predict the impact of adopting the intervention in a single site.  
To identify candidate variables, we relied on published reports from the studies involved, each 
of which tended to identify variables that were likely to moderate the impacts of the 
intervention.  
 
However, some of the subgroup and moderator variables identified from these studies are not 
helpful in predicting local impacts in advance because they are not knowable before the 
intervention is implemented.   In selecting or constructing site-level variables for the analysis, 
we focused on variables that the local policymaker would know or could learn before deciding 
whether to implement the intervention locally.  These include characteristics of the local 
students (e.g., share of students who are black, share of students who are in poverty) and 
schools (e.g., urbanicity).  But they exclude characteristics of the intervention (e.g., how it was 
implemented) or characteristics that would solely describe intervention participants (which 
may not be known until after the intervention is adopted).) 
 
For the education technology study, the subgroup and moderator variables came from data on 
individual schools.  These school-level data were used to directly construct site-level variables 
for the education technology study because each site consisted of a single school.  However, for 
the charter school study, each site consisted of multiple schools.  To construct site-level 
variables from school-level data, we took the average of the school-level values from schools 
attended by students who did not win admission in the charter lottery,9 weighted according to 
the relative size (by total enrollment) of these schools.   For the Head Start study, we 
constructed grantee-level variables by averaging variables for individual Head Start centers 
funded by a given grant—including variables that were aggregated from the child level—
weighting the center-level variables by the number of children in the center.  In this way, the 
Head Start site-level variables reflect the population of students that would be served by the 
grantee.   

                                                      
9 We did not include the characteristics of schools attended by students who won admission in the charter lottery 
(typically the charter school itself) in this aggregated measure because the characteristics of the charter schools 
would not be known before the policy decision is made about whether to allow charter schools to operate locally.  
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While most of the moderator variables were continuous, the subgroup analysis from equation 
(3) requires categorical or binary variables to divide the sample into subgroups that are 
mutually exclusive and exhaustive.  To construct binary variables from the continuous ones, we 
calculated the median value of the variable across the sites and set the subgroup variable to 
one for sites that were above the median and zero for sites that were at or below the median.   
 
Selection of Subgroup and Moderator Variables for the Regression Models 
 
For the analysis, we constructed 7 moderator/subgroup variables for the education technology 
study, 10 moderator/subgroup variables for the Head Start study, and 11 moderator/subgroup 
variables for the charter school study (see Exhibit 1).   
 
The approach in equation (3) uses a single binary subgroup variable.  The approach in equation 
(4) uses any number of continuous moderator variables.  Both approaches require a strategy for 
selecting the variable or variables that will be included in the regression model, and the 
response surface modelling approach also requires a decision on how many variables to 
include.   
 
The optimal number of moderators to include is not clear.  Including too many moderators risks 
overfitting the regression model, which could inflate the variance of the predictions; including 
too few moderators could yield site-level predictions with a large amount of bias.  Since both 
bias and variance contribute to RMSPE, there is a bias-variance tradeoff in choosing the number 
of moderators, and it is not clear a priori how to determine the optimal number of moderators. 
 
To address this problem, we estimated equation (4) with one, two, and five moderators.  If we 
found evidence that models with five moderators consistently outperformed models with two 
moderators, we were prepared to test models with more than five moderators.  The 
differences between the RMSPE across these three models helps to illuminate the value of 
additional moderator variables in the response surface function.  
 
The optimal strategy for selecting moderator variables for equation (4) is also not clear.  Our 
preferred strategy was to select the moderators that minimized the unexplained variance of 
impacts across sites—since this variance leads to biased local predictions, as explained earlier.  
However, when the number of candidate moderators was large, this would require testing a 
very large number of combinations of moderators to identify the combination for equation (4) 
with the smallest residual impact variance.  Therefore, for tractability, for each study we first 
selected the five moderators that, when each is interacted individually with the treatment, 
yielded the smallest p-values (the ones most strongly associated with impact magnitude).  
These five variables became the pool of candidate moderators eligible for inclusion in that 
model. 
 
From the moderators available in each study, we followed the following protocol to select 
specific moderators for each analytic approach: 
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 Binary subgroup approach (equation 3). We created a binary subgroup variable from 

each of the five candidate moderators, tested all five possible binary subgroup models, 
and selected the single subgroup variable that minimized the unexplained variance of 
impacts across sites.  
 

 One-moderator model (equation 4).  We tested all five possible one-moderator models 
from the eligible pool of continuous variables and selected the single moderator that 
minimized the unexplained variance of impacts across sites.  
 

 Two-moderator model (equation 4).  We tested all ten possible two-moderator models 
from the eligible pool and selected the two moderators that together minimized the 
unexplained variance of impacts across sites. 
 

 Five-moderator model (equation 4). All five candidate moderators from the eligible 
pool were included in the five-moderator model. 
 

  
Exhibit 1 shows the site-level variables that were candidate moderators for inclusion in the four 
types of models listed above; it also identifies in its footnotes the site-level variables that were 
most commonly selected for each model. A complication reflected in this exhibit is that the 
model selection strategy was implemented separately for each excluded site, or put differently, 
for each sample of n-1 sites that we treat as having been included in the evaluation.  Therefore, 
a different set of selected moderators could be selected for each of these samples.  For each of 
the four models with site-level moderators Exhibit 1 lists the moderators that were most 
frequently selected via the protocol described above.  
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Exhibit 1: Site-Level Moderators for the Analysis  
 Moderator Charter Schools a Education Technology b Head Start c 

Income 

% of students eligible for 
free or reduced-price lunch 2, 

3, 4 
% of students eligible for free or 
reduced-price lunch 4 

 % of children in households with 
income below the median for the 
study sample 1, 3, 4 

Race and ethnicity 
% of students who are white 
and not Hispanic 4 

% of students who are black 1, 2, 3, 4 
% of students who are Hispanic 3, 4 

% of children who are black 2,4 
% of children who are Hispanic 4 

Language   
% of children with Spanish as 
home language 4 

Sex   % of children who are female3,4 

Disability   
% of students who have an IEP or 
Service Agreement   

Student-teacher 
ratio # students / # teachers # students / # teachers 4   

Urbanicity 
% of students enrolled in 
schools in large cities 4 

% students enrolled in schools in 
urban areas 4 

 % of children at centers in 
urban areas 

School size 

Total number of students 
Total enrollment divided by 
grades served     

Teacher experience 

% students in schools with 
more than two-thirds of the 
teachers having at least five 
years of experience     

Achievement in 
math and reading d 

Difference between the 
school proficiency rate and 
the state proficiency rate in 
those grade levels in: 
• Math 4 
• Math and reading 1, 4     

Instructional 
approach 

Proportion of all students 
attending control schools in 
the site who are in schools 
that use "ability grouping" 2, 3     

Staffing   
Whether the school has a 
technology specialist on staff  

Availability of 
similar services in 
the community   

% of children at centers with a 
lot, some, or little competition 
from other providers in the area 

Affiliations   

% of children at centers affiliated 
with a: 
• Community-based 

organization 
• Government entity 
• Another type of organization 

Notes:   
1 This variable was the most common moderator selected for the subgroup approach. 
2 This variable was the most common moderator selected for the single-moderator response surface modeling 
approach. 
3 This variable was in the most common set of moderators selected for the two-moderator response surface 
modeling approach. 
4 This variable was in the most common set of moderators selected for the five-moderator response surface 
modeling approach. 
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Measuring the Magnitude of the Errors in Predicting Local Impacts 

To assess the accuracy of the predicted impacts under different prediction methods, we 
estimated an adjusted version of the root mean squared prediction error (RMSPE).  The 
adjustment accounts for the sampling error in our unbiased estimate of the “true” impact in an 
excluded site—error that without some adjustment, inflates the magnitude of both the MAPE 
and the RMSPE.   
 
Our adjusted estimate of the RMSPE is: 
 

(5)  𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� = �1
𝑛𝑛
∑ �∆�𝑖𝑖 − ∆�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1 − 1

𝑛𝑛
∑ 𝜎𝜎�𝜖𝜖𝑖𝑖2𝑛𝑛
𝑖𝑖=1 , 

 
where 𝑛𝑛 is the number of sites, ∆�𝑖𝑖 is the predicted impact for site 𝑗𝑗 (using the data from the 
other sites), ∆�𝑖𝑖 is the unbiased within-site estimate from the excluded site (using the data from 
site 𝑗𝑗), and 𝜎𝜎�𝜖𝜖𝑖𝑖2  is the variance of the sampling error in ∆�𝑖𝑖.  Subtracting the mean value of 𝜎𝜎�𝜖𝜖𝑖𝑖2  
across the sites adjusts for the sampling error that would not exist in a true simulation 
framework, where the true impact in each site was known.  If we knew the true impact in each 
site (with no sampling variability), equation (5) would simplify to the more familiar expression 

for the RMSE:  �1
𝑛𝑛
∑ �∆�𝑖𝑖 − ∆𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1 .  A formal derivation for equation (5) is provided in Appendix 

A.  
 
Hypothesis Tests   

The RMSPE estimates allow us to compare the performance of different prediction methods. 
However, a different sample drawn from the same population would yield a different estimate 
of the RMSPE. Therefore, it is useful to test whether the differences in the magnitude of the 
(squared) prediction errors are statistically significant. To test for significant differences 
between methods, we conducted a binomial or sign test. We tested the null hypothesis that the 
true prediction error is the same for both methods in every site. If we can reject this 
hypothesis, we may conclude that the two methods perform differently in one or more sites 
(the alternative hypothesis). If the null hypothesis were true, the two methods would have the 
same true RMSPE across sites but different estimated RMSPEs due to sampling error.  
 
Key implications of the null hypothesis are that: 
 

• For each site, the probability that the estimated squared prediction error is lower for 
one method than the other method is exactly 50 percent since this difference is purely 
random. 

• In expectation, each method will yield a smaller estimated squared prediction error than 
the other method in exactly half of the sites. 

• In practice, one method may yield a smaller estimated squared prediction error than the 
other method in more than half of the sites.  Call this percentage P1. 
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• Assuming independence across sites,10 the binomial distribution can be used to 
calculate the probability that one of the two methods outperforms the other in more 
than P1 percent of the sites.  Call this probability P2, where P2 is the p-value of the sign 
test.  

 
We rejected the null hypothesis if the p-value of the test was less than .05 (5 percent) using a 
two-tailed test.   
 
Policy Consequences of the Errors in Predicting Local Impacts 
 
Bell and Orr (1995) developed a Bayesian method to assess the risk of making an incorrect 
policy decision on the basis of a nonexperimental estimator.  We apply that method here to 
assess the predicted impact estimates obtained from the methods described above.  Bayesian 
methods posit an a priori distribution of possible values for a population parameter, such as 
true impact, by attaching a subjective probability to every possible value of that parameter. A 
fundamental theorem of Bayesian statistics states that, when one begins with an agnostic view 
of the size of a parameter, the probability distribution that the analyst should construct for that 
parameter based on data from a sample should be centered on the parameter estimate 
produced by the sample (DeGroot, 1970, pp. 190-191). In addition, if the sample estimate has a 
normal distribution, the probability distribution of possible parameter values also follows a 
normal distribution, with standard deviation equal to the standard error of the parameter 
estimate (Bell and Orr, 1995).  
 
Starting with an agnostic view of the true impact, I, in the excluded site, and observing the 
value and standard error of a single experimental impact estimate based on data from that site 
(referred to as the “estimated impact” above), it is possible to formulate a “posterior 
distribution” for the site’s true impact. This also applies to the expected value of the estimate, 
V, for that site taken from data on other sites in the evaluation (referred to as the “predicted 
impact” above), which we treat as another unknown parameter. Together, these two 
distributions, one for the true impact in the excluded site and one for the expected value of the 
prediction for that site, provide a basis for assessing the policy reliability of the prediction 
method (see Exhibit 2). 
 
 

                                                      
10 The estimated squared prediction errors are not strictly independent across sites because the samples used to 
predict the impact for each site overlap considerably, given the design of our leave-one-out analysis. However, 
most of the sampling variation in the estimated prediction error comes from the estimated impact for the 
excluded site, and these estimated impacts are independent from one another because the samples are non-
overlapping.  Therefore, the correlation between the squared estimated prediction errors for any two sites is sure 
to be small. 
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Exhibit 2:  Bayesian Posterior Distributions of True Impact in Excluded Site and Expected 
Value of Predicted Impact, Under Agnostic Prior 

 

 
 
 
 
We characterize the policy decision rule in the excluded site as a simple yes/no decision that 
depends on policymakers’ beliefs about the impact of the intervention, which we denote C.  If 
policymakers believe that the impact of the intervention exceeds some cut-off value C* that 
makes the intervention appealing to adopt, they will adopt the program; if they believe it does 
not, they will not adopt the program.  C* can represent any binary decision rule; it could, for 
example, be the value that makes the program cost-effective in a benefit-cost analysis, or it 
could simply be the minimum value that policymakers would judge “practically” significant for 
policy.  Since we do not know the value of C* in any particular application—indeed, the same 
program may have a different value of C* in different settings—we will consider a range of 
values of C. 
 
The risk, R, that the predicted impact V will lead to the wrong decision when the true impact is I 
and the cut-off is C*, is: 
 
(6) R(C*) = Pr (V < C* and I > C*) + Pr (V > C* and I < C*) 

 
where: 

Pr (V < C* and I > C*) is the probability that the predicted impact will show the 
program was ineffective (i.e., V < C*) when the program is effective (i.e., I > C*);  
 

Probability density 
of true impact (I) 

Probability density of 
expected value of 
predicted impact (V) 

Impact in effect size units 
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Pr (V > C* and I < C*) is the probability that the predicted impact will show that the 
program is effective (i.e., V > C*); when the program is ineffective (i.e., I < C*). 

 
Bell and Orr call formula (6), traced out over a range of values for C*, the “risk function.”  In the 
special case of zero correlation between V and I, these two random variables (normally 
distributed) are independent and the risk formula reduces to equation (7): 
 
(7) R(C*) = Pr (V < C*) ⋅ Pr (I > C*) + Pr (V > C*) ⋅ Pr (I < C*) 
 
Unfortunately, there is no exact analytic expression for R(C*) when V and I are correlated.  
However, we were able to develop a very accurate approximation to R(C*) for correlated V and 
I, and found that the results of our analysis were very insensitive to correlations of +.5 and -.5 
(see Appendix B).  Therefore, in the absence of any evidence or theory to indicate whether this 
correlation would be positive or negative, we use the probability given by equation 7, which 
assumes that V and I are uncorrelated, as our estimate of R(C*).  This function, and the two 
Bayesian distributions from which it is derived, are shown in Exhibit 3 for an illustrative 
outcome. 
 
 
Exhibit 3:  Risk Function for Making an Incorrect Policy Decision, R(C*) 
 

 

 
 
 
 
As with our measure of the accuracy of the predictions, the RMSPE, we compute the risk 
function for each site in each of three national evaluations, based on the predicted impact from 
the other sites in that study and the within-site experimental estimate (our estimate of the true 

Probability density 
of true impact (I) 

Probability density of 
expected value of 
predicted impact (V) 

 

R(C
*) 

Policy cut-off in effect size units 

Risk of incorrect policy 
decision (R(C*)) 

 
Probability density of 
true impact (I) 

Probability density of expected 
value of predicted impact (V) 
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impact).  For each possible value of C*, we then sum the calculated risks across all sites from a 
given evaluation and divide by the number of sites; this yields the expected proportion P(C*) of 
sites that would make the wrong decision on the basis of the extrapolated estimates if C* is the 
desired policy support cut-point: 
 

(8)  𝑅𝑅(𝐶𝐶∗) =  
∑ 𝑹𝑹𝒋𝒋(𝐶𝐶∗)𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
, 

 
where Rj(C*) is the probability of an incorrect policy decision in site j for a given value of C*.  
Thus, P(C*) is the average probability, across sites, of an incorrect decision.  P(C*) is our 
summary measure of the risk that sites will make the wrong policy decision if they rely on 
predicted impacts derived from a national evaluation.  In the empirical results, we show P(C*) 
as a percentage.   If P(C*) for a given C* is quite low, policymakers can be confident that using 
the predictions will usually lead to the right decision for that cut-point; if it is quite high, the 
predictions will have a high risk of leading to the wrong decision. 
 
 
EMPIRICAL RESULTS 
 
In this section, we present our estimates of the accuracy of different prediction methods, 
followed by the estimated risk of making a wrong policy decision based on each of those 
predictions. 
 
Accuracy of the Predictions 
 
Exhibit 4 shows the root mean square prediction errors (RMSPEs) for five different prediction 
methods from the sites that participated in a given multi-site RCT: the pooled impact estimate 
across sites; subgroup estimates; and estimates from regression models that interacted one, 
two, or five treatment effect moderators with the treatment indicator. This table presents 
results separately for the evaluations of charter schools, educational technology, and Head 
Start.  For each study, several different outcomes, denoted in the first two columns of the table, 
were analyzed.  Superscripts to the estimates indicate whether one method produced smaller 
(squared) prediction errors than another method, using the binomial test described earlier. 
 
The RMSPEs in the table are measured in standard deviations of the outcome variable; they 
vary from about 0.05 to nearly 0.40, with most clustered in the 0.10 - 0.30 range.  Because the 
RMSPEs are measured in effect size units, comparing them to the average effect sizes shown in 
the last column of Exhibit 4 provides a sense of the magnitude of the prediction errors.11 In 
general, the RMSPE estimates tend to be larger than the average effect size across the sites that 
participate in the RCT. This suggests that for the typical site, the prediction error may be larger 
than the impact that local policymakers are trying to predict.  
 
                                                      
11 However, the calculation of the Root Mean Squared Prediction Error places a heavier weight on outliers than the 
average effect size, which places equal weight on larger and smaller values. 
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Exhibit 4: RMSPE of Different Methods for Predicting Site-Specific Impacts, by Study and 
Outcome Domain 

 

 

Outcome 
Domain 

 

Grade 
Level 

 

Pooled 
Analysis 

 

Subgroup 
Analysis 

 

1-Moderator 
Model  

 

2-Moderator 
Model  

 

5-Moderator 
Model  

Published 
Impact 
Estimate* 

Charter Schools  

Math 6 0.175 0.176 0.170 0.171 0.190 -0.06 

Math 7 0.348 0.3711,2,5 0.214s 0.181s 0.156s -0.06 

Reading 6 0.2161,2,5 0.2462 0.264p 0.283p,s 0.284p -0.07 

Reading 7 0.1891 0.164 0.244p 0.248 0.259 -0.08 

Educational Technology  

Math 6 0.272 0.305 0.296 0.297 0.314 -0.15 

Math Algebra 0.119 0.146 0.140 0.131 0.203 0.15 

Reading 1 0.305 0.311 0.304 0.293 0.329 -0.06 

Reading 4 0.169s 0.205p 0.1712 0.1541 0.163 0.22 

Head Start   

Receptive 
vocabulary 

Pre-K 0.056 0.068 0.083 0.103 0.084 0.15 

Early numeracy Pre-K 0.0732 0.095 0.089 0.113p,5 0.0432 0.12 

Oral 
comprehension 

Pre-K 0.116 0.129 0.141 0.129 0.150 0.01 

Early reading Pre-K 0.206 0.2095 0.2132 0.2311 0.234s 0.17 

Self-regulation Pre-K 0.0781,5 0.097 0.137p 0.108 0.137p 0.02 

Externalizing Pre-K 0.2015 0.211 0.2125 0.230 0.256p,1 -0.05 
pSignificantly different from the pooled analysis.  
sSignificantly different from the subgroup analysis. 
1Significantly different from the 1-moderator model. 
2Significantly different from the 2-moderator model. 
5Significantly different from the 5-moderator model. 
* Published impact estimates for charter schools and education technology come from the final reports from those studies, 
Gleason et al. (2010) and Campuzano (2009), respectively.  Published impact estimates for the Head Start impact study come 
from a reanalysis of those data in Bloom and Weiland (2015) because the reanalysis pools the 3-year-old and 4-year-old 
cohorts—as we did in our analysis—while the final evaluation reports presents separate estimates by cohort.  
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Exhibit 4 shows that more complex models, with treatment effect interactions, did not 
generally produce smaller prediction errors in these three studies. In fact, the pooled model 
yields a smaller estimated RMSPE than each of the more complex models for over half of the 
outcomes examined.  For most outcomes, we were unable to reject the null hypothesis that the 
pooled method yields the same prediction error as each of the more complex methods. 
However, all nine of the significant differences between the pooled model and more complex 
models favored the pooled model.   
 
Risk of Making the Wrong Policy Decision 
 
In Exhibit 5, we show, for each prediction method and each study, across all outcomes in that 
study, the average probability of making the wrong policy decision when the policy cut-off C* is 
set to 0 standard deviations, .25 standard deviations, and .50 standard deviations.  The exhibit 
also indicates the maximum probability of an incorrect policy decision for any outcome across 
all possible values of the cut-off, and the average RMSPE from Exhibit 4 for each study and for 
all three studies combined.  (For outcome-specific risk estimates and the computer code used 
to generate these estimates, see Appendix C.) 
 
The cut-off of 0 is relevant in cases where the school can, without additional cost, substitute 
one policy for another – e.g., by changing a regulation – or when choosing between two equally 
costly interventions, such as two curricula.  The .25 cut-off would require that the proposed 
intervention be as effective as the typical high school intervention (see Hill et al., 2008 for 
evidence on the impacts of such interventions).  The .50 cut-off corresponds to the 
effectiveness of the typical middle school intervention or to an atypically expensive elementary 
or high school intervention that must be correspondingly more effective to be appealing to 
local policymakers (Hill et al., 2008). 
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Exhibit 5:  Average and Maximum Risk of Incorrect Policy Decision Across All Outcomes, by 
Study and Method of Predicting Site-Specific Impacts, Alternative Values of C* 

 

Policy Cut-off Pooled 
Analysis 

Subgroup 
Analysis 

1-Moderator 
Model  

2-Moderator 
Model 

5-Moderator 
Model  

Charter Schools 
Avg. risk at C*=0 45% 47% 43% 42% 43% 
Avg. risk at C*=.25 15% 16% 15% 15% 16% 
Avg. risk at C*=.50 4% 4% 5% 5% 5% 
Maximum risk 56% 61% 64% 66% 58% 
Avg. RMSPE 0.24 0.20 0.17 0.21 0.22 

Educational Technology 
Avg. risk at C*=0 49% 54% 49% 45% 48% 
Avg. risk at C*=.25 22% 22% 22% 23% 26% 
Avg. risk at C*=.50 7% 7% 7% 7% 8% 
Maximum risk 55% 64% 60% 48% 52% 
Avg. RMSPE 0.23 0.25 0.23 0.22 0.25 

Head Start 
Avg. risk at C*=0 45% 46% 47% 46% 47% 
Avg. risk at C*=.25 30% 31% 30% 31% 32% 
Avg. risk at C*=.50 13% 13% 13% 13% 13% 
Maximum risk 53% 53% 59% 55% 57% 
Avg. RMSPE 0.15 0.15 0.16 0.17 0.10 

Combined Studies 

Avg. risk at C*=0 47% 49% 47% 45% 46% 

Avg. risk at C*=.25 29% 31% 31% 30% 32% 
Avg. risk at C*=.50 12% 12% 12% 12% 13% 
Maximum risk 56% 64% 64% 66% 58% 
Avg. RMSPE 0.21 0.20 0.19 0.20 0.19 
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The risk estimates in Exhibit 5 follow several systematic patterns.  First, for a given study and 
policy cut-off, there is little variation in the probability of an incorrect policy decision across 
prediction methods.  Second, that probability tends to fall as the policy cut-off increases: Policy 
errors become less likely as the impact required for policy approval increases.  Finally, the 
maximum risk of an incorrect policy decision tends to be in the range between 45% and 60%.  
(Note that the maximum risk shown for the pooled studies is the maximum of the individual 
study maxima.)  As shown in the first three panels of the exhibit, across studies and prediction 
methods the average risk ranges from 42% - 54% when the policy cut-off is zero.  When the cut-
off is .25, this range falls to 15% - 32%.  And when the cut-off is .50, the average risk across 
studies and prediction models is 10% - 21%. 
 
These estimates suggest that in the case of C* = 0 – i.e., when the policymaker would be 
satisfied with any positive impact – the national evaluation is of little help.  The chance of 
making the right policy decision at the local level based on evidence from such an evaluation is 
at best only slightly better than 50%—the rate we would expect if policymakers just flipped a 
coin.12  At the other extreme, when only an impact of .50 or greater would induce the policy 
maker to adopt the intervention, on average, s/he will be led astray by the national evaluation 
only about 1 time in 8.   
 
In the intermediate case of C* = .25, averaging across the three studies (the last panel of Exhibit 
5), the probability of making the wrong policy decision by relying on the national evaluation is 
about 30%.  This risk may seem high relative to our usual tolerance for the risk of Type I or II 
errors in hypothesis testing.  But it must be viewed relative to the risk of making the wrong 
decision in the absence of a national evaluation.  In most cases, local policymakers have 
virtually no information about the likely impact of a new intervention in the absence of a 
national evaluation, and without that evidence, they are unlikely to have less than a 50% 
probability of making the wrong decision.  If that is true, in this intermediate case where policy 
makers require an impact of .25, the national evaluation reduces the risk of the wrong policy 
decision by about two-fifths, from 50 percent to 30 percent.   
 
 
DISCUSSION AND IMPLICATIONS  
 
The empirical results presented in this paper suggest—at least for the three interventions 
examined—that most localities will not be able to predict accurately in advance the likely 
consequences of adopting an educational intervention or policy with any of the five approaches 
tested here. The prediction errors tend to be very large for all five methods, in all three studies, 
and in fact, there is no evidence that more complex models improve prediction accuracy.  
 

                                                      
12 Note that this does not mean that the intervention is as likely to be effective as ineffective.  Regardless of the 
probability of the intervention being effective, flipping a coin involves a 50% risk of making the wrong policy 
decision. 
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Furthermore, our estimates almost surely understate the size of the typical prediction error 
because they fail to adjust for the homogenizing effect of conducting the RCT in an 
unrepresentative sample of sites.  Out-of-sample prediction errors for schools that fall outside 
of the distribution observed in the original study sample cannot be calculated because there is 
no way to obtain an unbiased estimate of impact for schools that were not part of that sample.  
However, if there are systematic differences in the types of schools that participated in the RCT 
and schools that did not, out-of-sample prediction errors for sites not included in the original 
sample are likely to be larger than for the sites examined here that were included in the original 
studies.13 
 
A unique contribution of this analysis is the ability to estimate the probability of making the 
wrong local policy decision on the basis of the national evaluation.  That probability depends 
strongly on the size of impact the policy maker requires to justify adopting the intervention.  
For costless interventions, where any positive impact would justify adoption, a national 
evaluation is of little help.  On the other hand, for interventions where a large (.50 or larger) 
effect size is required for adoption, the national evaluation substantially reduces the risk of 
making the wrong policy decision, to a level of 12 - 13%.  For intermediate policy cut-offs, the 
risk is still substantial – in the range of 30% -- but roughly two-fifths less than it would have 
been in the absence of the evaluation.  
 
Furthermore, more complex models generally did not reduce the probability of making the 
wrong policy decisions, which is not surprising given that they generally did not reduce the 
magnitude of the prediction errors.   This may be due to the fact that these more complex 
methods estimated impacts as a function of site characteristics, yet national evaluations are 
almost never powered for such analyses.  That may explain why including site characteristics 
that moderate impact magnitude does not necessarily help make the predictions more 
accurate. Evaluations that are powered to estimate site-level subgroup specific effects might 
show a better ability to predict site-specific impacts as more site characteristics are brought 
into the analysis as moderators. 
 
These results are, course, based on a small sample of three studies that may or may not be 
typical in factors that influence findings from this type of analysis.  Whether we would reach 
similar conclusions on the basis of national studies of other educational interventions is an 
open question.  For example, we would expect more accurate predictions for interventions with 
less cross-site variation in impacts than those examined here.14  More research is needed on 
both the magnitude of cross-site impact variation for educational interventions and the 
accuracy with which we can predict site-level impacts from multi-site impact evaluations in 
education.   
 

                                                      
13 See Stuart et al. (2017) for an analysis of the characteristics of schools that participate in education RCTs, relative 
to the national population of schools. 
14 See Weiss et al. (forthcoming) for new evidence on the cross-site variance of impacts for 13 educational 
interventions. 
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It is important to recognize that national studies may and often do serve purposes other than 
informing local policy decisions.  Many national studies funded by the federal government are 
designed to inform federal policy decisions, for which estimates of the overall effectiveness of 
an intervention across a diversity of settings/sites may be most informative.  For that purpose, 
we would expect national studies to produce more accurate evidence to guide policy. However, 
even when used for that purpose, national studies may provide misleading evidence if impacts 
vary across sites and sites are selected non-randomly (see Allcott, 2015 and Bell et al., 2015). 
 
While these results suggest caution in extrapolating the results of national evaluations to local 
schools or school districts, especially for low-cost interventions, our objective here is not to 
reach definitive conclusions about the usefulness of national evaluations for informing local 
decisions.  Rather, our primary objective is to draw the attention of evaluators and 
policymakers to the challenges of making local predictions from national studies and to develop 
and demonstrate a method for analyzing the problem.  We hope that this will motivate other 
researchers to pursue similar analyses and, ultimately, to the development of a literature on 
external validity similar to the design replication literature that has been built over the last 30 
years to assess the internal validity of nonexperimental methods for impact analysis.  
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Appendix A:  Derivation of Adjusted Estimator for Root Mean Squared Prediction Error  
 
As indicated in equation (5), we used an adjusted estimator for the root mean squared 
prediction error (RMSPE) to summarize the magnitude of the prediction errors across sites.  
This appendix formally demonstrates why an adjustment is necessary and derives the adjusted 
RMSPE estimator in equation (5).   
 
To begin, suppose that: 
 
 ∆𝑖𝑖 is the true impact in site j (unknown for all sites) 
 ∆𝑖𝑖 can be estimated without bias for each site j, thanks to random assignment, with 

data from site j (the “unbiased impact estimate for site j”) 
 ∆𝑖𝑖 can be predicted with bias for each site j, using a statistical model, with data from 

the other sites (the “predicted impact for site j”) 

 
With this foundation, we can define the prediction error for a single site, summarize the 
prediction errors across sites, and define an estimator that adjusts for or “nets out” the 
sampling error that would not exist if the true impact in each site were known.  
 
1. PREDICTION ERROR 
 
Equation (1) provides an expression for the unbiased impact estimate for site j from the 
randomized trial, using only the data from site j:  
 
(1) ∆�𝑖𝑖= ∆𝑖𝑖 + 𝜖𝜖𝑖𝑖,  
 
where ∆𝑖𝑖 is the true impact for site j and 𝜖𝜖𝑖𝑖 is sampling error in the estimate due to the finite 
sample in site j.  This sampling error is assumed to be normally distributed:  𝜖𝜖𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜖𝜖𝑖𝑖2 �. The 
expected value of 𝜖𝜖𝑖𝑖 is zero because the estimator is unbiased.   
 
Equation (2) provides an expression for the predicted impact for site j from the randomized 
trial, using the data for all study sites other than site j:  
 
(2) ∆�𝑖𝑖= ∆𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖,  
 
where 𝑏𝑏𝑖𝑖 is the bias in the predicted impact and 𝜔𝜔𝑖𝑖 is sampling error in the prediction due to 
the finite sample in the sites used in making the prediction.  This sampling error is assumed to 
be normally distributed—𝜔𝜔𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜔𝜔𝑖𝑖2 �—and independent of 𝜖𝜖𝑖𝑖. Note that 𝑏𝑏𝑖𝑖 is a fixed 
parameter that is a function of the methodology used to predict the impact in site j using the 
data from other sites.  
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The prediction error for site j is just the difference between the predicted impact and the true 
impact: 
 
(3) 𝑅𝑅𝑅𝑅𝑖𝑖 = ∆�𝑖𝑖 − ∆𝑖𝑖 

= �∆𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖� − ∆𝑖𝑖 
= 𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖 

 
Our best estimate of the prediction error for site j is the difference between the predicted 
impact and the unbiased (but noisy) impact estimate: 
 
(4) 𝑅𝑅𝑅𝑅�𝑖𝑖 = ∆�𝑖𝑖 − ∆�𝑖𝑖 

= �∆𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖� − �∆𝑖𝑖 + 𝜖𝜖𝑖𝑖� 
= �𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖� − 𝜖𝜖𝑖𝑖 

 
Comparing equation (3) and (4), we can see that the estimated prediction error in equation (4) 
equals the true prediction error minus the sampling error in the unbiased (but noisy) impact 
estimate for site j (𝜖𝜖𝑖𝑖).  Since this sampling error has an expected value of zero, the estimated 
prediction error for site j is unbiased for the true prediction error for site j. However, the 
variance of the estimated prediction error (𝜎𝜎𝜔𝜔𝑖𝑖2 + 𝜎𝜎𝜖𝜖𝑖𝑖2 ) exceeds the variance of the true 
prediction error (𝜎𝜎𝜔𝜔𝑖𝑖2 ).  
 
2. MEAN SQUARED PREDICTION ERROR (MSPE) 
 
In this section, we define the MSPE for an individual site, identify the most obvious estimate for 
this parameter, note that this estimate is biased upward, provide an alternative estimate that 
corrects for the bias, and average the corrected MSPE estimates across the sites. 
 
2.1. MSPE for a Single Site 
 
The mean squared error of the predicted impact for site j—which we call the mean squared 
prediction error (MSPE) for that site—is defined as the expected squared prediction error in site 
j.  This expectation is defined across repeated samples selected to predict the impact in site j: 
 
(5)  𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅�𝑅𝑅𝑅𝑅𝑖𝑖2� 

= 𝑅𝑅�𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖�
2
 

= 𝑅𝑅�𝑏𝑏𝑖𝑖2 + 2𝑏𝑏𝑖𝑖𝜔𝜔𝑖𝑖 + 𝜔𝜔𝑖𝑖2� 
= 𝑏𝑏𝑖𝑖2 + 2𝑏𝑏𝑖𝑖𝑅𝑅�𝜔𝜔𝑖𝑖� + 𝑅𝑅�𝜔𝜔𝑖𝑖2�   because 𝑏𝑏𝑖𝑖 is a fixed parameter 
= 𝑏𝑏𝑖𝑖2 + 𝜎𝜎𝜔𝜔𝑖𝑖2       because 𝜔𝜔𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜔𝜔𝑖𝑖2 � 

 
The equation above shows the familiar result that the Mean Squared Error is the sum of the 
squared bias and the variance.  
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For site j, the most obvious way to estimate the MSPE is to square the estimated prediction 
error: 
 
(6) 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖 = 𝑅𝑅𝑅𝑅�𝑖𝑖

2 
 
Unfortunately, this estimator is biased upward: the expected value of this estimator exceeds 
the true MSPE for site j by an amount that equals the variance of the unbiased estimate for site 
j: 
 
(7) 𝑅𝑅�𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖� 

= 𝑅𝑅�𝑅𝑅𝑅𝑅�𝑖𝑖
2�      

= 𝑅𝑅��𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖� − 𝜖𝜖𝑖𝑖�
2
 

= 𝑅𝑅�𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖�
2
− 2𝑅𝑅��𝑏𝑏𝑖𝑖 + 𝜔𝜔𝑖𝑖�𝜖𝜖𝑖𝑖� + 𝑅𝑅�𝜖𝜖𝑖𝑖�

2
 

= 𝑏𝑏𝑖𝑖2 + 𝑅𝑅�𝜔𝜔𝑖𝑖2� − 2�𝑏𝑏𝑖𝑖𝑅𝑅�𝜖𝜖𝑖𝑖� + 𝑅𝑅�𝜔𝜔𝑖𝑖𝜖𝜖𝑖𝑖�� + 𝑅𝑅�𝜖𝜖𝑖𝑖�
2
 

= 𝑏𝑏𝑖𝑖2 + 𝜎𝜎𝜔𝜔𝑖𝑖2 − 2�𝑅𝑅�𝜔𝜔𝑖𝑖𝜖𝜖𝑖𝑖�� + 𝜎𝜎𝜖𝜖𝑖𝑖2  because 𝜔𝜔𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜔𝜔𝑖𝑖2 � and 𝜖𝜖𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜖𝜖𝑖𝑖2 � 
= 𝑏𝑏𝑖𝑖2 + 𝜎𝜎𝜔𝜔𝑖𝑖2 + 𝜎𝜎𝜖𝜖𝑖𝑖2      because 𝜔𝜔𝑖𝑖  is independent of 𝜖𝜖𝑖𝑖 
= 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 + 𝜎𝜎𝜖𝜖𝑖𝑖2  

 
Fortunately, the bias in the estimated MSPE for site j can be estimated (without bias) and 
removed.  Equation 7 shows that the bias equals the variance of the unbiased estimate for site j 
(𝜎𝜎𝜖𝜖𝑖𝑖2 ).  Let 𝜎𝜎�𝜖𝜖𝑖𝑖2   be the ordinary least squares estimate of the variance of the unbiased impact 
estimate for site j (∆�𝑖𝑖).  Assuming that this variance estimate is unbiased (or at least consistent), 
we can construct an unbiased (or at least consistent) estimate of the MSPE for site j. 
 
Let us define a new, corrected estimator for the MSPE in site j: 
 
(8)  𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖 = 𝑅𝑅𝑅𝑅�𝑖𝑖

2 − 𝜎𝜎�𝜖𝜖𝑖𝑖2  
 
The expected value of this estimator equals the true MSPE for site j: 
 
(9) 𝑅𝑅�𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖� 

= 𝑅𝑅�𝑅𝑅𝑅𝑅�𝑖𝑖
2 − 𝜎𝜎�𝜖𝜖𝑖𝑖2 � 

= 𝑅𝑅�𝑅𝑅𝑅𝑅�𝑖𝑖
2� − 𝑅𝑅�𝜎𝜎�𝜖𝜖𝑖𝑖2 � 

= �𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 + 𝜎𝜎𝜖𝜖𝑖𝑖2 � − 𝑅𝑅�𝜎𝜎�𝜖𝜖𝑖𝑖2 �   see equation (7) 
= �𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 + 𝜎𝜎𝜖𝜖𝑖𝑖2 � − 𝜎𝜎𝜖𝜖𝑖𝑖2    since 𝜎𝜎�𝜖𝜖2 is unbiased 
= 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖  
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2.2. Average MSPE Across Sites  
 
The previous section provides an unbiased estimate for the MSPE for a single site.  However, for 
our leave-one-out exercise, we want to summarize the MSPEs across sites by taking the 
average.   Let us define the parameter that we want to estimate as the average MSPE across 
the N sites in this sample: 
 
(10) 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅 = 1

𝑁𝑁
∑ 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖𝑁𝑁
𝑖𝑖=1  

 
One estimator for this parameter is the simple average of the corrected, unbiased estimates for 
the MSPEs across the collection of sites: 
 
(11) 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� = 1

𝑁𝑁
∑ 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖
𝑁𝑁
𝑖𝑖=1   

 
Since the corrected estimator for the MSPE in site j is unbiased for the true MSPE in that site, as 
shown in equation (9), the simple average of those estimators is unbiased for the simple 
average of the true MSPEs across all sites: 
 
(12) 𝑅𝑅�𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� � = 𝑅𝑅 �1

𝑁𝑁
∑ 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖
𝑁𝑁
𝑖𝑖=1 � 

=
1
𝑁𝑁
� 𝑅𝑅�𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� 𝑖𝑖�

𝑁𝑁

𝑖𝑖=1
 

=1
𝑁𝑁
∑ 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖𝑁𝑁
𝑖𝑖=1  

=𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅 
       

Therefore, using Equations (11), (8), and (4), our measure of the average MSPE across sites is: 
 
(13) 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅� = 1

𝑁𝑁
∑ ��∆�𝑖𝑖 − ∆�𝑖𝑖�

2
− 𝜎𝜎�𝜖𝜖𝑖𝑖2 �𝑁𝑁

𝑖𝑖=1 = 1
𝑁𝑁
∑ �∆�𝑖𝑖 − ∆�𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1 − 1

𝑁𝑁
∑ 𝜎𝜎�𝜖𝜖𝑖𝑖2𝑁𝑁
𝑖𝑖=1 , 

 
where the 1

𝑁𝑁
∑ �∆�𝑖𝑖 − ∆�𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1  is the average of the squared prediction error estimates and 

1
𝑁𝑁
∑ 𝜎𝜎�𝜖𝜖𝑖𝑖2𝑁𝑁
𝑖𝑖=1  is the average of the variance estimates for the unbiased, site-level impact 

estimates. 
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Appendix B:  Estimating the Risk Function for Correlated V and I 
 

1. Computation of R(C*) when Estimates are Uncorrelated 
 
The general formula for the risk function is: 
 
B.1) R(C*) = Pr (V < C* and I > C*) + Pr (V > C* and I < C*) 

 
where: 

Pr (V < C* and I > C*) is the probability that the predicted estimate will show the 
program was not effective (i.e., V < C*) when the program is effective (i.e., I > C*);  
 
Pr (V > C* and I < C*) is the probability that the predicted impact estimate will show 
that the program is effective (i.e., V > C*); when the program is ineffective (i.e., I < C*). 

 
In the special case of zero correlation between V and I, these two random variables (normally 
distributed) are independent and the risk formula reduces to: 
 
B.2) R(C*) = Pr (V < C*) ⋅ Pr (I > C*) + Pr (V > C*) ⋅ Pr (I < C*) 
 

2. Approximating R(C*) When I and V are Correlated 
 
Unfortunately, there is no closed-form solution for the probabilities in the risk function formula 
B.1 when the within-site impact (I) and the expected value of the predicted impact for the site 
(V) are correlated.  However, we can approximate the probabilities in equation B.1 as follows. 
 
We express the probability space over which R(C*) is to be calculated as a grid of small squares 
of width w, each centered on a point (xiv,yiv).  Within each of these squares that satisfy either of 
the conditions in equation B.1 (either (xiv < C* and yiv > C*) or (xiv > C* and yiv < C*)), we 
calculate the probability density of the bivariate normal distribution, for which there is a closed-
form expression that depends on the correlation between x and y.  For each value of C*, we 
then sum the product of these probabilities times the area of each square (w2), over the entire 
space satisfying the conditions in equation B.1. This sum equals R(C*).  In principle, the bivariate 
normal distribution extends from minus infinity to plus infinity; to render the problem 
computationally tractable, we truncated the space to + 4 standard deviations. 
 

B.3) 𝑅𝑅(𝐶𝐶∗) =  ∑ ∑ 𝑅𝑅𝑖𝑖𝑣𝑣𝑤𝑤2𝑓𝑓(𝑥𝑥𝑖𝑖𝑣𝑣,𝑦𝑦𝑖𝑖𝑣𝑣)+4/𝑤𝑤
𝑖𝑖=−4/𝑤𝑤

+4/𝑤𝑤
𝑣𝑣=−4/𝑤𝑤 , where:  

 
 Piv = 1 if either (xiv < C* and yiv > C*) or (xiv > C* and yiv < C*) 
       = 0 otherwise 
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= bivariate normal probability density function 
         ρ = Correl(𝑥𝑥,𝑦𝑦) 

 
Setting the correlation between V and I to zero, we tested two different grid widths, w=.01 and 
w=.005 standard deviations, against the values of R computed by formula in the case where the 
correlation between V and I is zero.  The results are shown in Exhibit B.1, which shows our 
central risk measure, P(C), the average value of R(C*) across all sites, for each of the outcomes 
in the analysis.  The computer code used to generate these estimates is presented in the final 
section of this appendix. 
 
We found that the estimates given by w=.005 were quite close to the values yielded by the 
formula (see average differences in last three rows of Exhibit B.1).  For that reason, we use 
areas of width .005 in the approximations shown in the following section of this appendix.   
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Exhibit B.1 P(C) Computed by Formula and by Two Approximations, ρ = 0 
 
 
 
 
 By formula .01 Approx .005 Approx 

Difference 
(B) - (A)  

Difference 
(C) - (A) 

 (A) (B) (C) (D) (E) 
Charter year 1 math 

        C* = 0 0.412 0.389 0.400 -0.023 -0.012 
   C* = .25 0.112 0.108 0.110 -0.004 -0.002 
   C* = .50 0.019 0.018 0.018 -0.001 -0.001 
Charter year 2 math 

        C* = 0 0.357 0.344 0.351 -0.013 -0.006 
   C* = .25 0.217 0.211 0.214 -0.006 -0.003 
   C* = .50 0.111 0.108 0.110 -0.003 -0.001 
Charter year 1 reading 

        C* = 0 0.572 0.545 0.559 -0.027 -0.013 
   C* = .25 0.144 0.139 0.141 -0.005 -0.003 
   C* = .50 0.034 0.034 0.034 0.000 0.000 
Charter year 2 reading 

        C* = 0 0.421 0.407 0.414 -0.014 -0.007 
   C* = .25 0.148 0.144 0.146 -0.004 -0.002 
   C* = .50 0.030 0.029 0.030 -0.001 0.000 
Ed Tech math 6 

        C* = 0 0.481 0.463 0.472 -0.018 -0.009 
   C* = .25 0.327 0.317 0.322 -0.010 -0.005 
   C* = .50 0.099 0.096 0.097 -0.003 -0.002 
Ed Tech algebra 

        C* = 0 0.465 0.445 0.455 -0.020 -0.010 
   C* = .25 0.178 0.174 0.176 -0.004 -0.002 
   C* = .50 0.051 0.050 0.050 -0.001 -0.001 
Ed Tech TOWRE 

        C* = 0 0.529 0.507 0.518 -0.022 -0.011 
   C* = .25 0.263 0.256 0.259 -0.007 -0.004 
   C* = .50 0.083 0.081 0.082 -0.002 -0.001 
Ed Tech reading 1 

        C* = 0 0.464 0.442 0.453 -0.022 -0.011 
   C* = .25 0.256 0.250 0.253 -0.006 -0.003 
   C* = .50 0.109 0.108 0.108 -0.001 -0.001 
Ed Tech reading 4 

        C* = 0 0.502 0.464 0.483 -0.038 -0.019 
   C* = .25 0.224 0.218 0.221 -0.006 -0.003 
   C* = .50 0.060 0.058 0.059 -0.002 -0.001 
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3.  Estimating P(C) for Alternative values of ρ 
 
To test the sensitivity of the risk estimates to the correlation between the estimates of V and I, 
we used the approximation with a .005 grid to estimate P(C) for correlations of -.5, 0, and +.5, 
for C* = 0, C=.25, and C* = .5, for all outcomes in the analysis.  The results are shown in Exhibit 
B.2. 
 
As can be seen in the last two columns of the last three rows of the exhibit, the average 
estimated values of P(C) for correlated I and V are virtually identical to the values for 

Head Start PPVT 
        C* = 0 0.296 0.288 0.292 -0.008 -0.004 

   C* = .25 0.408 0.395 0.402 -0.013 -0.006 
   C* = .50 0.155 0.152 0.154 -0.003 -0.001 
Head Start WJ AP 

        C* = 0 0.398 0.386 0.392 -0.012 -0.006 
   C* = .25 0.334 0.324 0.329 -0.010 -0.005 
   C* = .50 0.126 0.124 0.125 -0.002 -0.001 
Head Start WJ LW 

        C* = 0 0.347 0.341 0.344 -0.006 -0.003 
   C* = .25 0.450 0.433 0.441 -0.017 -0.009 
   C* = .50 0.190 0.187 0.188 -0.003 -0.002 
Head Start WJ OC 

        C* = 0 0.525 0.476 0.500 -0.049 -0.025 
   C* = .25 0.226 0.221 0.223 -0.005 -0.003 
   C* = .50 0.079 0.078 0.078 -0.001 -0.001 
Head Start self regulation 

       C* = 0 0.537 0.503 0.520 -0.034 -0.017 
   C* = .25 0.276 0.272 0.274 -0.004 -0.002 
   C* = .50 0.122 0.120 0.121 -0.002 -0.001 
Head Start 
externalizing 

        C* = 0 0.501 0.470 0.486 -0.031 -0.015 
   C* = .25 0.250 0.246 0.248 -0.004 -0.002 
   C* = .50 0.122 0.120 0.121 -0.002 -0.001 

      Average across all 
outcomes 

        C* = 0 0.454 0.431 0.443 -0.022 -0.011 
   C* = .25 0.254 0.247 0.251 -0.007 -0.004 
   C* = .50 0.093 0.091 0.092 -0.002 -0.001 
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uncorrelated I and V when C* = 0 or C* = .25, and differ by only about .04 standard deviations 
when C* = .5.  We conclude that the estimates are quite insensitive to this correlation, and 
therefore, in the absence of any evidence or theory to suggest whether the correlation should 
be positive or negative, we use the more exact (because it allows calculation of P(C) by formula) 
and computationally efficient ρ = 0 to produce the results shown in the text and in Appendix C. 
 
 
Exhibit B.2 P(C) for Correlated V and I 
 
 Correlation   

 
ρ = 0 ρ = -.5 ρ = +.5 Diff (B) - (A)  Diff (C) - (A) 

 (A) (B) (C) (D) (E) 
Charter year 1 math 

        C* = 0 0.400 0.428 0.370 0.028 -0.030 
   C* = .25 0.110 0.111 0.108 0.001 -0.002 
   C* = .50 0.018 0.018 0.018 0.000 0.000 
Charter year 2 math 

        C* = 0 0.351 0.373 0.327 0.022 -0.023 
   C* = .25 0.214 0.223 0.204 0.009 -0.010 
   C* = .50 0.110 0.114 0.106 0.004 -0.004 
Charter year 1 reading 

        C* = 0 0.559 0.617 0.502 0.058 -0.057 
   C* = .25 0.141 0.143 0.139 0.002 -0.003 
   C* = .50 0.034 0.034 0.034 0.000 0.000 
Charter year 2 reading 

        C* = 0 0.414 0.437 0.389 0.024 -0.025 
   C* = .25 0.146 0.146 0.145 0.000 -0.001 
   C* = .50 0.030 0.030 0.030 0.000 0.000 
Ed Tech math 6 

        C* = 0 0.472 0.505 0.438 0.033 -0.035 
   C* = .25 0.322 0.333 0.309 0.011 -0.013 
   C* = .50 0.097 0.097 0.097 0.000 0.000 
Ed Tech algebra 

        C* = 0 0.455 0.504 0.400 0.049 -0.055 
   C* = .25 0.176 0.179 0.172 0.003 -0.004 
   C* = .50 0.050 0.050 0.050 0.000 0.000 
Ed Tech towre 

        C* = 0 0.518 0.555 0.484 0.037 -0.034 
   C* = .25 0.259 0.264 0.254 0.004 -0.005 
   C* = .50 0.082 0.082 0.082 0.000 0.000 
Ed Tech reading 1 
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   C* = 0 0.453 0.491 0.414 0.038 -0.039 
   C* = .25 0.253 0.258 0.247 0.005 -0.006 
   C* = .50 0.108 0.108 0.108 0.000 0.000 
Ed Tech reading 4 

        C* = 0 0.483 0.552 0.415 0.069 -0.068 
   C* = .25 0.221 0.227 0.216 0.005 -0.005 
   C* = .50 0.059 0.059 0.059 0.000 0.000 
Head Start PPVT 

        C* = 0 0.292 0.298 0.285 0.006 -0.007 
   C* = .25 0.402 0.414 0.387 0.013 -0.014 
   C* = .50 0.154 0.154 0.153 0.000 0.000 
Head Start WJ AP 

        C* = 0 0.392 0.410 0.373 0.018 -0.019 
   C* = .25 0.329 0.344 0.313 0.015 -0.017 
   C* = .50 0.125 0.126 0.124 0.001 -0.001 
Head Start WJ LW 

        C* = 0 0.344 0.349 0.339 0.004 -0.006 
   C* = .25 0.441 0.473 0.409 0.032 -0.033 
   C* = .50 0.188 0.188 0.188 0.000 -0.001 
Head Start WJ OC 

        C* = 0 0.500 0.577 0.425 0.076 -0.075 
   C* = .25 0.223 0.224 0.222 0.001 -0.001 
   C* = .50 0.078 0.078 0.078 0.000 0.000 
Head Start self regulation 

       C* = 0 0.520 0.586 0.456 0.066 -0.064 
   C* = .25 0.274 0.277 0.270 0.003 -0.004 
   C* = .50 0.121 0.121 0.120 0.000 -0.001 
Head Start 
externalizing 

        C* = 0 0.486 0.542 0.427 0.057 -0.059 
   C* = .25 0.248 0.248 0.247 0.000 0.000 
   C* = .50 0.121 0.121 0.121 0.000 0.000 

      Average across all 
outcomes 

        C* = 0 0.443 0.482 0.403 0.039 -0.040 
   C* = .25 0.251 0.258 0.243 0.007 -0.008 
   C* = .50 0.092 0.092 0.091 0.000 -0.001 
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4. Computer Code (in R) Used to Generate Risk Estimates When V and I Are Correlated 
 

#this script adapts the bell-orr formula to settings with correlated 
#impact estimates using a grid approximation of the bivariate 
#normal density. it requires a data set with columns for outcome, 
#model, site, within-site estimated impact, within-site estimated 
#standard error, nonexperimental estimated impact, and 
#nonexperimental estimated standard error. 
# 
#the main function ‘bell.orr.corr’ takes in 3 arguments: 
#1) dat.subset subsets the data frame according to outcome and 
#model 
#2) rho is the correlation between estimates 
#3) approx.crit is the number indicating the width of the grid 
#intervals over which the bivariate normal density is evaluated. 
# 
#the main function also calls an outer function bv.norm that 
#approximates the bivariate normal density 
# 
#the loop at the end of the script allows one to loop over 
#all combinations of outcomes, models, correlations, and 
#grid approximation interval widths of interest. if there are many 
#combinations of interest, this task is best parallelized for 
#efficiency. 
 
#DEFINE INNER FUNCTIONS AND OBJECTS FOR LOOP 
 
# function to evaluate bivariate normal pdf on grid 
bv.norm <- function(x, y, cutoff, mu, sigma) { 
  z <- cbind(x,y) 
  cond.bv.norm <- ifelse((x < cutoff & y > cutoff) | (x > cutoff & y < cutoff), 
                         dmvnorm(z,mean=mu,sigma=sigma), 
                         0) 
  return(cond.bv.norm) 
} 
 
# specify vector holding cutoff values 
c <- seq(-4,4,by=.01) 
 
#DEFINE FACTORS FOR LOOP 
# outcome 
outcomes <- unique(dat$outcome) 
# model 
models <- unique(dat$model) 
# correlation 
rhos <- 0 
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# approximation grid 
approx.crits <- c(.01,.005) 
 
#DEFINE MAIN FUNCTION 
bell.orr.corr <- function(dat.subset,rho,approx.crit) { 
   
  require(mvtnorm) 
  require(plyr) 
  require(ggplot2) 
   
  x <- seq(-4, 4, by=approx.crit) 
  y <- x 
   
  rjc <- adply(dat.subset,1,function(df) { 
     
    sapply(c, function(cutoff) { 
       
      mu <- c(df$unbiased.impact,df$modeled.impact) 
       
      sigma <- matrix(c(df$unbiased.se^2,df$unbiased.se*df$modeled.se*rho, 
                        df$unbiased.se*df$modeled.se*rho,df$modeled.se^2), 
                      nrow=2) 
     
       
      # use outer function to evaluate pdf on 2D grid of x-y values 
      fxy <- outer(x, y, bv.norm, cutoff, mu, sigma) 
        
      return(sum(approx.crit^2*fxy)) 
        
    }) 
     
  }) 
   
rjc[c("X","outcome","site","unbiased.impact","unbiased.se","model","modeled.impact"
,"modeled.se")] <- NULL 
   
  rc <- data.frame(c,apply(rjc,2,mean)) 
   
  colnames(rc) <- c("C","rc") 
   
  rc$rc <- sapply(rc$rc,function(x) ifelse(x>1,1,x)) 
   
  c0 <- format(round(rc$rc[rc$C==0],3),nsmall=3) 
  c25 <- format(round(rc$rc[rc$C==0.25],3),nsmall=3) 
  c50 <- format(round(rc$rc[rc$C==0.5],3),nsmall=3) 
  max.rc <- format(round(max(rc$rc),3),nsmall=3) 
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  rc.plot <- ggplot(rc, aes(x=C, y=rc)) + 
    geom_line() + 
    ylab("R(C*)") + 
    xlab("C") 
   
  return.list <- list(print(rho), 
                      
dat.subset$unbiased.impact,dat.subset$unbiased.se,dat.subset$modeled.impact,dat
.subset$modeled.se, 
                      c0,c25,c50,max.rc, 
                      rc.plot) 
  names(return.list) <- c("rho", 
                          "ij.impact","ij.se","ijx.impact","ijx.se", 
                          "c0","c25","c50","max.rc", 
                          "plot") 
  return(return.list) 
   
} 

 
results <- list() 
#LOOP 
for (outcome in outcomes) { 
  for (model in models) { 
    for (rho in rhos) { 
      for (criterion in approx.crits) { 
        results[[paste(outcome,model,rho,criterion,sep="_")]] <-  
          bell.orr.corr(dat.subset=subset(dat,outcome==outcome & model==model), 
rho=rho,approx.crit=criterion) 
      } 
    } 
  } 
} 
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Appendix C.  Detailed Estimates of P(C)  
 

1. Estimates by Outcome and Method of Predicting Site-Specific Impacts, Alternative 
Values of C 

 
To give the reader an overall sense of how P(C), the average risk of an incorrect policy decision 
across sites, varies with C and the prediction method, the results presented in text Exhibit 5 
were averaged across all outcomes in each study.  In this appendix, we present detailed 
estimates of P(C), by outcome, for three different values of C and five prediction methods.  
Results for each of the three studies are shown in a separate exhibit.  The computer code used 
to generate these estimates is presented in the final section of this appendix. 
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Exhibit 1:  Charter Schools: Risk of Wrong Policy Decision, for Alternative Outcomes, 
Prediction Methods, and Values of C 

    

 

Policy Cut-off 

Pooled 
Analysis 

Subgroup 
Analysis 

1-Moderator 
Model 

2-Moderator 
Model 

5-Moderator 
Model 

Math, 6th Grade 

C* = 0 0.443 0.457 0.386 0.363 0.409 

C* = .25 0.105 0.105 0.111 0.115 0.123 

C* = .50 0.019 0.019 0.019 0.019 0.019 

Maximum Risk 0.556 0.458 0.447 0.414 0.460 

Math, 7th Grade 

C* = 0 0.507 0.469 0.295 0.249 0.265 

C* = .25 0.225 0.271 0.225 0.180 0.184 

C* = .50 0.097 0.097 0.119 0.128 0.115 

Maximum Risk 0.558 0.479 0.307 0.278 0.280 

Reading, 6th Grade  

C* = 0 0.493 0.570 0.606 0.637 0.556 

C* = .25 0.129 0.129 0.142 0.149 0.172 

C* = .50 0.033 0.033 0.034 0.034 0.037 

Maximum Risk 0.552 0.605 0.644 0.660 0.578 

Reading, 7th Grade 

C* = 0 0.370 0.389 0.430 0.447 0.470 

C* = .25 0.134 0.134 0.139 0.154 0.179 

C* = .50 0.028 0.028 0.028 0.030 0.036 

Maximum Risk 0.551 0.391 0.636 0.559 0.530 
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Exhibit 2:  Educational Technology:  Risk of Wrong Policy Decision, for Alternative Outcomes, 
Prediction Methods, and Values of C 

    

 

Policy Cut-off 

Pooled 
Analysis 

Subgroup 
Analysis 

1-Moderator 
Model 

2-Moderator 
Model 

5-Moderator 
Model 

Math, 6th Grade 

C* = 0 0.468 0.513 0.475 0.469 0.482 

C* = .25 0.277 0.317 0.329 0.347 0.365 

C* = .50 0.089 0.089 0.096 0.097 0.123 

Maximum Risk 0.561 0.524 0.509 0.474 0.499 

Algebra 

C* = 0 0.444 0.463 0.472 0.444 0.502 

C* = .25 0.164 0.166 0.168 0.180 0.213 

C* = .50 0.050 0.050 0.050 0.050 0.055 

Maximum Risk 0.549 0.524 0.522 0.478 0.513 

TOWRE 

C* = 0 0.497 0.602 0.569 0.461 0.514 

C* = .25 0.247 0.250 0.249 0.259 0.308 

C* = .50 0.082 0.082 0.082 0.082 0.089 

Maximum Risk 0.545 0.635 0.601 0.470 0.524 

Reading, 1st Grade  

C* = 0 0.515 0.494 0.434 0.424 0.455 

C* = .25 0.237 0.250 0.241 0.255 0.296 

C* = .50 0.105 0.105 0.105 0.106 0.126 

Maximum Risk 0.547 0.499 0.471 0.432 0.463 
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Reading, 4th Grade 

C* = 0 0.493 0.603 0.488 0.459 0.467 

C* = .25 0.219 0.219 0.220 0.231 0.233 

C* = .50 0.060 0.060 0.060 0.060 0.060 

Maximum Risk 0.535 0.641 0.496 0.459 0.468 
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Exhibit 3:  Head Start:  Risk of Wrong Policy Decision, for Alternative Outcomes, Prediction 
Methods, and Values of C 

    

 

Policy Cut-off 

Pooled 
Analysis 

Subgroup 
Analysis 

1-Moderator 
Model 

2-Moderator 
Model 

5-Moderator 
Model 

Receptive vocabulary 

C* = 0 0.283 0.283 0.287 0.309 0.318 

C* = .25 0.392 0.402 0.408 0.421 0.415 

C* = .50 0.154 0.154 0.154 0.156 0.155 

Maximum Risk 0.528 0.535 0.541 0.528 0.483 

Early numeracy 

C* = 0 0.383 0.400 0.393 0.407 0.406 

C* = .25 0.318 0.344 0.321 0.347 0.342 

C* = .50 0.125 0.125 0.125 0.126 0.130 

Maximum Risk 0.532 0.497 0.537 0.529 0.455 

Early reading 

C* = 0 0.339 0.345 0.339 0.345 0.367 

C* = .25 0.413 0.450 0.445 0.459 0.482 

C* = .50 0.189 0.189 0.189 0.189 0.195 

Maximum Risk 0.530 0.507 0.513 0.552 0.535 

Oral comprehension 

C* = 0 0.508 0.528 0.548 0.527 0.514 

C* = .25 0.223 0.223 0.223 0.223 0.236 

C* = .50 0.079 0.079 0.079 0.079 0.081 

Maximum Risk 0.527 0.531 0.566 0.543 0.515 
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Self-regulation 

C* = 0 0.527 0.520 0.588 0.517 0.532 

C* = .25 0.273 0.273 0.277 0.276 0.282 

C* = .50 0.122 0.122 0.122 0.122 0.122 

Maximum Risk 0.533 0.521 0.590 0.519 0.533 

Externalizing 

C* = 0 0.484 0.501 0.471 0.506 0.543 

C* = .25 0.248 0.248 0.248 0.249 0.256 

C* = .50 0.122 0.122 0.122 0.122 0.122 

Maximum Risk 0.532 0.518 0.502 0.527 0.565 
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2. Computer Code (in R) Used to Generate Estimates of P(C) 
 
#the function takes in 3 arguments: 
#1) site.walk, which is a vector of the site ids; 
#2) ij, which is a matrix of 2 columns (impact and standard error) and 
#n rows corresponding to n sites, holds the within-site estimates 
#3) ijx, of same size as ij, holds the nonexperimental estimates 
# 
#it returns a list of 9 objects; 4 vectors that are the impact estimates and  
#standard errors for both methods; 4 numbers corresponding to the 4 
#relevant values of R(C*); and a plot of R(C*).  
 
c <- seq(-4,4,by=.01) 
#this is a vector holding the 801 values of C 
 
bell.orr <- function(site.walk,ij,ijx) { 
   
  require(plyr) 
  require(ggplot2) 
   
  all.sites <- sapply(site.walk, function(site) { 
    sapply(c, function(cutoff) { 
      fj <- pnorm(cutoff,mean=ij[paste(site),1],sd=ij[paste(site),2]) 
      fjx <- pnorm(cutoff,mean=ijx[paste(site),1],sd=ijx[paste(site),2]) 
      rj <- (1-fj)*fjx + (1-fjx)*fj 
      return(rj) 
    }) 
  }) 
  rownames(all.sites) <- c 
   
  #above, inside the two sapply statements: 
  #1) the fj line evaluates the normal cdf for a given value of C and  
  #for a given site from the matrix of within-site estimates of impacts  
  #and standard errors; 
  #2) the fjx line evaluates the normal cdf for a given value of C and 
  #for a given site from the matrix of nonexperimental estimates of 
  #impacts and standard errors 
  #3) the rj line then evaluates the risk function at that given value 
  #of C and for that given site 
  # 
  #the inner sapply statement is then applying this to each value of C. 
  #it returns a column vector of length 801 which is R(C*) evaluated at 
  #each value of C for a given site j. 
  # 
  #the outer sapply statement then follows by creating one of these 
  #column vectors for each site. in the case of the PPVT outcome, we 
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  #have 73 sites, so this leaves a 801 x 73 matrix. 
 
  rc <- adply(all.sites,1,mean) 
   
  #this single command above then (following the PPVT example) 
  #takes the 801 x 73 matrix of Rj(C) values and finds the mean for 
  #each value of C across all sites. the way it's coded here, it results 
  #in an 801 x 2 matrix, in which the first column is the value of C and 
  #the second column is the corresponding value of R(C*). 
 
  colnames(rc) <- c("C","rc") 
  rc$C <- c 
   
  c0 <- format(round(rc$rc[rc$C==0],3),nsmall=3) 
  c25 <- format(round(rc$rc[rc$C==0.25],3),nsmall=3) 
  c50 <- format(round(rc$rc[rc$C==0.5],3),nsmall=3) 
  max.rc <- format(round(max(rc$rc),3),nsmall=3) 
  #the first three of the above four commands evaluate the risk function 
  #at C=0, 0.25, and 0.5, respectively. the fourth command finds the 
  #maximum value of the risk function. 
   
  rc.plot <- ggplot(rc, aes(x=C, y=rc)) + 
    geom_line() + 
    ylab("R(C*)") + 
    xlab("C") 
   
  #this plots the 801 values of C on the X axis and the corresponding 801 
  #values of R(C*) that are the mean values of Rj(C) across all sites on the Y axis. 
   
  return.list <- list(ij[,1],ij[,2],ijx[,1],ijx[,2],c0,c25,c50,max.rc,rc.plot) 
  names(return.list) <- c("ij.impact","ij.se","ijx.impact","ijx.se","c0", 
                          "c25","c50","max.rc","plot") 
  return(return.list) 
} 
 
#to run, substitute vector of site ids, matrix containing unbiased impact  
#estimates and standard errors for all sites, and matrix containing 
#nonexperimental impact estimates and standard errors for all sites into 
#site.walk, ij, and ijx arguments, respectively, of below function. 
 
bell.orr(site.walk=,ij=,ijx=) 
 


